25 Practice Problems for Derivatives

November 13, 2014

1 Power rule

Find the derivative of each of the following functions:

1. $a(x)=3 x^{7}-10 x+24 x^{3}-1$
2. $b(x)=\frac{x^{2}-5 x+3}{\sqrt[3]{x}}$
3. $c(x)=5^{2}-\frac{3}{x^{4}}$

2 Product rule

Find the derivative of each of the following functions:

1. $d(x)=\sin (x) \cos (x)$
2. $e(x)=x^{10} e^{x}$
3. $f(x)=2^{x} x^{2} \tan (x)$

3 Quotient rule

Find the derivative of the following function:

- $g(x)=\frac{2 e^{x}+4}{\cos (x)+3 x-1}$

Find the second derivative of the following function:

- $h(x)=\frac{\sin (x)}{x^{2}}$

4 Chain rule

For each of the following, write the given function as a composition of two functions, i.e., as $f(g(x))$, where you have identified f and g. Then take the derivative using the chain rule. Note: some problems may require more than one chain rule.

1. $i(x)=\left(22 x^{4}+\sqrt{x}\right)^{9}$
2. $j(x)=\sin \left(x^{3}+1\right)$
3. $k(x)=\sin ^{3}(x)+1$
4. $l(x)=\ln (\sin (x))$
5. $m(x)=\sin \left(\cos \left(e^{5 x^{2}-3 x+2}\right)\right)$

5 Multiple rules

Find the derivative of each of the following functions:

1. $n(x)=\frac{x \ln (x)}{x^{3 / 2}+1}$
2. $o(x)=\left(3 x^{5}-2 x+7\right)^{13} e^{x}$
3. $p(x)=\ln \left(x-\frac{1}{e^{x}}\right)$
4. $q(x)=\ln (x \sin (x))$

6 Implicit differentiation

Find y^{\prime} in each of the following examples. Remember, y is a function! This means you must use some extra derivative rules. Golden rule: if your derivative of a y-term doesn't have y^{\prime}, you missed a derivative rule!

1. $x^{2} y+\sin (y)=5 y^{2}+3$
2. $e^{2 y+1}=x$

Find $y^{\prime \prime}$ from the following equation.

- $x^{3}+y^{3}=1$

7 Logarithmic differentiation

In the following problems you will find it helpful to make an equation of the form $y=\ldots$ and take a natural logarithm of both sides before differentiating.

1. $r(x)=x^{x}$
2. $s(x)=\left(x^{2}-4\right)^{\sin (x)}$
3.

$$
t(x)=\frac{\sqrt{4 x^{3}-x+1}}{x^{2 / 3} \tan (x)}
$$

8 Related rates

1. A spherical snowball is melting in the sun. Its radius is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{s}$. When the radius reaches 5 cm , how quickly is the snowball losing volume?
2. An airplane flies overhead 2 miles up at a speed of $500 \mathrm{mi} / \mathrm{hr}$. When it has travelled 1 mile from where you are, how quickly is the distance from you to the airplane increasing?
